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Abstract
Brain size scales with body size across large groups of
animals, but exactly why this should be the case has not
been resolved. It is generally assumed that body size is a
general proxy for some more important or specific un-
derlying variable, such as metabolic resources available,
surface area of the body, or total muscle mass (which is
more extensively innervated than is, e.g., adipose tis-
sue). The present study tests whether brain size in mam-
mals scales more closely with muscle mass (and other
components of lean body mass) than with total fat. Fel-
senstein’s independent comparisons method was used
to control for phylogenetic effects on body composition
in organ weight data taken from a previously published
comparative sample of 39 species in 8 different orders of
mammals, all collected and processed by the same
researchers. The analysis shows that the size of the cen-
tral nervous system (CNS) is more closely associated
with components of fat-free weight than it is to fat
weight. These results suggest a possible explanation for
why metabolic resources and brain size both share the
same general relationship with body size across mam-
mals. They also suggest that some measure of lean body

mass is a more appropriate scaling parameter for com-
paring brain size across species than is overall body
weight.

Copyright © 2004 S. Karger AG, Basel

Introduction

It has long been known that brain weight scales with
body weight across large groups of animals. The correla-
tion between these variables in different studies is very
high, typically greater than r = 0.95 [Martin, 1981]. Exact-
ly why this would be the case remains a fundamental
question in the study of brain evolution. Although exis-
tence of a correlation does not prove direct causation, any
truly causal relationship must necessarily also be a corre-
lational one. To the extent we accept that a given correla-
tion is not due to chance, we also accept that some causal
connection exists between the two variables, although the
connection might only be through the influence of other
(perhaps unmeasured) variables. A key step in under-
standing why two variables are correlated involves explor-
ing the web of associations among possibly relevant vari-
ables [Blalock, 1970]. In a 1990 review article in Science,
Harvey and Krebs point out that in studies of brain/body
size scaling, ‘... for the most part, body weight is employed
as a surrogate measure for some (perhaps unidentified)
underlying variable.’ [Harvey and Krebs, 1990]. Body
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weight might simply be associated with brain weight (in
the statistical sense) without directly causing differences
in brain weight. Many biological features covary with
body weight, such that the exact nature of the cause-effect
relationship between body weight and brain weight re-
mains unclear.

If body weight is just a proxy measure, what is it a
proxy for? Two well known hypotheses concern body sur-
face area [Jerison, 1973] and metabolic resources [Martin,
1981; Armstrong, 1983]. Jerison’s [1973] data suggested
brain and body weight scaled with an allometric exponent
of F0.67, which is the same as that relating surface area
to volume (among identically shaped objects). He there-
fore suggested that brain size might be keeping pace with
the surface area of the body, perhaps because the amount
of information about the external world that a species has
access to (and needs to process) might be proportional to
surface area [Jerison, 1985]. Martin [1981] used a larger
dataset and a more statistically appropriate line-fitting
technique (major axis) and found that the allometric
exponent was actually closer to 0.76, which matches
empirical estimates of the exponent relating basal meta-
bolic rate to body size. From this he hypothesized that the
mother’s basal metabolic rate might be the key limiting
factor for the size of the brain of any offspring. This argu-
ment has been criticized on the basis that the association
between brain and metabolism disappears after control-
ling for body size [McNab and Eisenberg, 1989; Pagel and
Harvey, 1989], although this simply shows that the varia-
tion in brain size that is unrelated to body size is also
unrelated to metabolism. Because we are interested spe-
cifically in the variance that is related to body size, these
criticisms do not disprove the metabolic resources hy-
pothesis. It is likely that the metabolic resources of an
organism are relevant to brain size variation in some fash-
ion [Aiello and Wheeler, 1995]. In any case, these studies
demonstrate that in order to explain the correlation
between brain size and body size, we must fully investi-
gate the web of associations among various biological fea-
tures in groups of mammals and other animals.

The present study seeks to expand our understanding
of these associations by focusing on sub-components of
body size. Body size is, after all, the sum of a number of
different parts. These parts are clearly inter-related, but
they are not perfect functions of each other. Some sub-
components might be more closely related to brain size
than others. Given that muscle tissue is more intimately
associated with brain function than adipose tissue, it is
reasonable to expect that some estimate of muscle mass
would scale more closely with brain size than adipose tis-

sue. In fact, this argument has long been used as a possible
explanation for the larger average brain size (as estimated
by cranial capacity) found in Neanderthal specimens
compared to modern humans [Dubois, 1921; Trinkaus
and Howells, 1979; Holloway, 1981, 1985]. Neanderthal
post-crania suggest they were significantly more heavily
muscled than modern humans [Trinkaus and Howells,
1979; Ruff et al., 1993, 1994; Abbott et al., 1996; Trink-
aus, 1997]. If brain size varies specifically with muscle
mass (or something closely associated), we would expect
Neanderthals to have larger brains. In fact, at least one
recent study [Wood and Collard, 1999] suggests that the
encephalization quotient (EQ: the ratio of actual/pre-
dicted brain size) for Neanderthal is essentially the same
as in modern humans. Although there are problems with
this analysis (EQ’s hide large absolute differences in brain
size; see discussion below), it supports the contention that
muscle and/or lean body mass might be highly relevant
for making sense of differences in estimated cranial
capacities in hominids.

In addition, the idea that brain weight might scale spe-
cifically with fat-free weight has also long been used as a
possible explanation for sex differences in brain size
(which average about 100 g favoring males, after correct-
ing for differences in total body weight) [Manouvrier,
1903; Gould, 1981; Ankney, 1992]. Sexual dimorphism in
fat-free weight is substantially greater than is sexual
dimorphism in overall weight (males weigh more and
have proportionately less fat).

However, because metabolic resources have been im-
plicated in brain size variation and brain evolution [Aiello
and Wheeler, 1995], and because adipose tissue repre-
sents an important storage of metabolic resources, it is
possible that brain size would vary closely with fat levels
across mammals. It is true that muscle also contains sig-
nificant metabolic stores (primarily in the form of glyco-
gen), and is also very metabolically active. However, gly-
cogen stores in muscle are generally unavailable to other
tissues [Lehninger, 1982], and in any case such stores are
more limited compared to fat. The body typically has only
enough glycogen to supply about a day’s worth of basal
metabolism, whereas fat stores generally contain enough
calories for several weeks [Lehninger, 1982; Campbell,
1993]. From a metabolic perspective, fat would seem to
be a particularly important gauge of a species energy
resources. However, fat and muscle are obviously not in
competition with each other: fat stores exist to supply a
variety of energy needs in the body, including those of
muscles. So it is reasonable to expect that muscle mass
and fat mass would be associated with one another across
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species, and therefore that fat and muscle might both scale
closely with brain size if metabolic resources are critical.

It remains an open question, therefore, whether brain
weight should be more closely associated with fat-free
weight, fat weight, or both. This question has never been
empirically investigated on any comparative dataset to
date, even though the assumption of tight scaling with
muscle mass has been repeatedly used as an explanation
for brain size differences in various contexts. This study
addresses the question directly.

Materials and Methods

There are two ways to approach the question of data selection in
comparative studies. Typically, researchers cull data on as many dif-
ferent species as possible. The hope is that the statistical advantages
conferred by a large data set will be greater than the errors obviously
introduced by the fact that different studies often use different meth-
odologies with different limitations carried out by different investi-
gators at different times. Conversely, one could emphasize consisten-
cy of methodology, but typically at the expense of the size of the data
set. It is always preferable to use a set of data that includes both brain
weight and body composition measurements taken by the same
investigators on the same individual specimens, but for practical rea-
sons this effectively limits the diversity of species that one can
include. Neither of these approaches to data selection is a perfect
solution. If a relationship actually exists across some large range of
taxonomic groups, both kinds of studies should point to the same
conclusions. In the present study, the second approach, emphasizing
consistent methodology, is used. Data were taken from Pitts and Bul-
lard [1968]. In this study, body composition was determined by the
same set of investigators through a consistent methodology applied
to all specimens: gross dissection of major components followed by
the determination of fat content by ether extraction. This appears to
be the only large data set of its kind in the literature.

The data includes values for 39 species from 8 different orders of
mammals. Their specimens were almost entirely wild-caught in Alas-
ka, Virginia, and Brazil. The weights of the following body segments
were taken (or calculated) from their data tables: (1) CNS, brain +
spinal cord (which were not separately listed, unfortunately; see
below); (2) WT, total body minus gut contents and fur; (3) FFWT,
fat-free body minus CNS; (4) FAT, total fat weight; (5) MUSCLE,
total muscle weight; (6) BONE, bone (unscraped, and including mar-
row) weight; (7) HEART, heart weight.

Ten of the 39 species could not be used because CNS data were
not reported. When individuals of a species were collected in two
different locations, the data from the location which yielded the larg-
est number of individuals were used in the analyses. For one species,
Marmota monax, two specimens (one male and one female) substan-
tially different in body weight and collected in different regions were
reported. These two were averaged together to provide a single esti-
mate for this species.

Because CNS includes the weight of the spinal cord, this measure
is not identical to brain weight variables used in other comparative
studies. However, because spinal cord weight is much smaller than
brain weight (typically F10% of brain weight in primates), and cor-
relates very highly with brain size across mammals [r = 0.95,

MacLarnon, 1996], the addition of spinal cord weight should not
materially affect the conclusions and analyses presented here.

Table 1 lists the species used, along with the location and num-
bers of individuals of each sex, and the raw data for these measures as
calculated from tables in Pitts and Bullard [1968]. Five of the eight
orders of mammals are represented by only one species each: Marsu-
pials, Edentates, Primates, Insectivores, and Lagomorphs. There
were six Carnivore species, nine Chiroptera, and 19 Rodent. The
possible biasing effects of this uneven representation is discussed
below.

The body sizes included in this sample cover a huge range: from
just over 7 grams for Glossophaga soricina to 9,362 grams for Gulo
luscus (wolverine). Although this is almost a 1,300-fold difference, it
represents only a fraction of the entire range found across all mam-
mals. The conclusions based on this data set, therefore, might not be
applicable for species significantly outside this range.

Methodological Considerations
Sex Distribution. There are additional limitations to this dataset.

One is that different species are represented by different proportions
of males and females. Unfortunately, Pitts and Bullard [1968] do not
list separate values for each sex (or for each individual), so it is not
possible to use the average of male and female values for the present
analysis. However, it is possible to determine the extent to which
differences in proportional sex representation explain species differ-
ences in degree of fatness by calculating the partial correlation
between percent of individuals that were female in the species sample
and log FAT, controlling for log WT. This was not significant (r2 =
0.041, n = 27, independent comparisons), suggesting that variability
introduced because of different proportions of females and males
across the samples is not likely to materially affect the conclusions.

Seasonality and Geographic Distribution. Another consideration
is that species were collected in different seasons and locations, in
such a way that seasonality and geographic location are conflated.
Pitts and Bullard [1968] report that almost all of the Alaskan and
Wisconsin specimens were collected in summer, whereas the Virgin-
ia and Brazilian specimens were collected in the winter. Although it
is not possible to completely disentangle these variables, it is possible
to determine whether fat levels were higher in species collected dur-
ing the winter rather than the summer. This was done by regressing
percent FAT against log WT for all species, and then subjecting the
residuals to an ANOVA to see whether winter-collected species had
significantly higher residuals than summer-collected species. Fig-
ure 1 plots percent FAT against log WT, and shows that Summer-
collected species do have a slight tendency to display lower than aver-
age percent FAT for their log WT, as compared to the winter-col-
lected species in this sample. An ANOVA of the residuals of this
regression (using season collected as the grouping variable) shows
that this tendency is not statistically significant (mean summer-col-
lected residual = –1.282, mean winter-collected residual = 0.522,
F(1,36) = 1.878, p = 0.179). However, because geographic location is
conflated with season for this data, it is still possible that a seasonali-
ty effect exists but is hidden from this analysis (though notice that
Brazilian specimens – which experience a milder winter – appear to
average slightly higher percent fat than the Virginian specimens,
which is contrary to the expectation that animals in colder regions
would have more percent fat). The regression and correlation analy-
ses were therefore repeated separately within both the winter-col-
lected (Brazilian and Virginian) and summer-collected (Alaskan)
sub-samples. If the pattern of associations between variables is entire-
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Table 1. Species data from Pitts and Bullard [1968] used in this study. See text for definitions of the body composition variables

Order Family Genus Species Location = Y Wt* FAT FFWT CNS HEART MUSCLE BONE

Carnivora Felidae Felis canadensis Alaska 1 7,688.00 1,120.00 6,568.00 105.09 27.59 4,341.45 631.18
Carnivora Felidae Felis rufus Virginia 1 2 6,152.00 738.00 5,414.00 81.75 25.45 3,600.31 552.23
Carnivora Mustelidae Gulo luscus Alaska 1 9,362.00 562.00 8,800.00 85.36 80.96 5,271.20 879.12
Carnivora Mustelidae Mustela erminea Alaska 3 183.30 3.10 180.20 6.69 1.87 104.70 21.98
Carnivora Mustelidae Mustela vison Virginia 2 1,032.00 66.00 966.00 18.06 7.63 581.53 80.27
Carnivora Procyonidae Procyon lotor Virginia 3 6,040.00 1,013.00 5,027.00 58.31 36.19 2,920.69 517.78
Chiroptera Molossidae Molossus major Brazil 3 11.07 0.22 10.89 0.35 0.15 5.51 1.36
Chiroptera Phyllostomidae Artibeus jamaicensis Brazil 5 9 40.47 3.79 36.18 0.96 0.47 18.02 4.48
Chiroptera Phyllostomidae Artibeus lituratus Brazil 1 4 63.65 6.22 57.19 1.21 0.74 29.05 8.09
Chiroptera Phyllostomidae Glossophaga soricina Brazil 2 1 7.22 0.25 7.15 0.37 0.10 3.86 0.69
Chiroptera Phyllostomidae Phyllostomus discolor Brazil 7 34.37 2.38 32.20 1.00 0.36 16.49 3.87
Chiroptera Phyllostomidae Phyllostomus hastatus Brazil 2 92.26 5.41 87.05 2.10 0.89 47.01 11.75
Chiroptera Phyllostomidae Sturnira lilium Brazil 2 15.39 1.21 14.25 0.62 0.16 6.33 2.04
Chiroptera Phyllostomidae Vampyrops lineatus Brazil 3 22.03 1.59 20.24 0.76 0.24 10.59 2.23
Chiroptera Vespertilionidae Eptesicus fuscus Virginia 2 17.88 1.51 16.37 0.32 0.19 7.43 2.26
Edentata Dasypodidae Euphractos sexcinctus Brazil 2 2,459.00 252.20 2,123.00 19.32 12.95 864.06 269.20
Insectivora Talpidae Scalopus aquaticus Virginia 1 44.64 1.23 43.41 1.01 0.34 21.88 5.30
Lagomorpha Ochotonidae Ochotona collaris Alaska 1 120.90 7.00 113.90 3.06 0.73 57.18 11.32
Marsupialia Didelphiidae Didelphis marsupialis Virginia 1 1 1,411.00 107.00 1,304.00 7.56 7.56 681.99 203.42
Primates Calllitrichidae Callithrix jacchus Brazil 1 3 186.00 8.70 176.20 7.56 1.22 87.92 26.69
Rodentia Castoridae Castor canadensis Virginia 1 1 9,331.00 865.00 8,466.00 53.34 27.94 4,622.44 897.40
Rodentia Cricetidae Clethrionomys gapperi Virginia 1 18.34 0.14 18.20 0.64 0.13 9.25 2.22
Rodentia Cricetidae Clethrionomys rutilus Alaska 10 10 25.27 0.72 24.55 0.60 0.19 11.34 1.94
Rodentia Cricetidae Lemmus trimucronatus Alaska 3 2 41.62 0.75 40.87 1.03 0.28 19.94 3.82
Rodentia Cricetidae Microtus pennsylvanicus Virginia 2 5 31.38 1.20 30.18 0.76 0.26 14.46 2.59
Rodentia Cricetidae Microtus oeconomus Alaska 1 8 24.83 0.45 24.38 0.67 0.19 11.12 2.44
Rodentia Cricetidae Microtus pinetorum Virginia 1 6 19.41 0.45 18.96 0.57 0.15 9.46 1.86
Rodentia Cricetidae Ondatra zibethica Virginia 3 5 1,180.00 86.00 1,094.00 7.11 3.50 679.37 115.96
Rodentia Cricetidae Oryzomys palustris Virginia 1 61.62 7.88 53.74 1.11 0.34 26.92 5.33
Rodentia Cricetidae Peromyscus leucopus Virginia 5 4 16.99 0.59 16.40 0.61 0.17 8.02 1.49
Rodentia Cuniculidae Cuniculus paca Brazil 1 1,565.00 196.50 1,368.00 29.00 7.80 737.35 140.90
Rodentia Dasyproctidae Dasyprocta aguti Brazil 1 1 2,097.00 263.40 1,833.80 25.86 13.94 1,115.13 168.53
Rodentia Erethizontidae Erethizon dorsatum Virginia 1 1 5,339.00 674.00 4,725.00 37.80 24.10 2,197.13 576.45
Rodentia Muridae Mus musculus Virginia 2 2 15.88 0.96 14.92 0.48 0.15 7.07 1.22
Rodentia Sciuridae Citellus undulatus Alaska 3 1 479.00 21.00 458.00 6.00 2.56 257.85 38.01
Rodentia Sciuridae Marmota caligata Alaska 2 3,558.00 749.00 2,809.00 20.37 16.57 1,671.36 257.02
Rodentia Sciuridae Marmota monax Alaska,

Virginia
1 1 2,194.00 536.50 1,657.50 12.73 8.11 817.13 149.49

Rodentia Sciuridae Sciurus carolinensis Virginia 1 499.00 11.00 488.00 8.88 2.83 306.46 51.73
Rodentia Sciuridae Tamiasciurus hudsonicus Alaska 9 2 192.80 3.80 189.00 5.50 1.68 114.16 18.16

* WT excludes gut contents and fur.

ly explained by location/seasonality, then these within-subgroup
analyses will show null results. Thus, this analysis will be useful even
though it cannot strictly rule out seasonality effects.

Control for Phylogenetic Effects. Because calculations using indi-
vidual species as data points do not take into account the potential
for statistical bias caused by the non-independence (in a phylogenetic
sense) of these species, Felsenstein’s [1985] independent compari-
sons method was also applied, as implemented by Purvis and Ram-
baut’s CAIC software package [Purvis and Rambaut, 1995]. This
method compares sets of differences between different nodes in a
phylogenetic tree. Each data point therefore does not represent an
individual species, but rather the difference between a given pair of
species (or nodes in the phylogenetic tree). Because these paired com-
parisons potentially represent differences accumulating in vastly dif-
fering amounts of time, they cannot be considered to have the same
expected variance, so they are weighted by a factor proportional to
the amount of evolutionary time presumed to separate the two nodes

[Felsenstein, 1985]. The specific phylogenetic hypothesis used in this
study is shown in figure 2. It is based on immunological distance data
collected over the last 30 years by the Wilson and Sarich Lab at U.C.
Berkeley [Vincent Sarich, personal communication].

Felsenstein [1985] pointed out that the problem of overestimat-
ing the statistical independence of species data does not apply if the
characters of interest respond very rapidly to natural selection,
although he cautioned that, ‘It may be doubted how often phyloge-
netic inertia is effectively absent’ (p. 6). The facts of human brain
evolution, however, demonstrate that brain size and body weight can
be dramatically decoupled in a very short time (by evolutionary stan-
dards). Consistent patterns of brain/body weight associations across
species therefore might be evidence of natural selection maintaining
such patterns, rather than phylogenetic inertia. Nevertheless, it
would seem prudent to analyze the data using independent contrasts
in addition to the raw species values.
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Fig. 1. Relationship between log WT and
percent FAT for species collected in summer
vs. winter, with geographic location of the
specimens also coded. Line represents the
least-squares regression (% Fat = 0.339 +
2.942(log WT); r2 = 0.388, p ! 0.001).

Correlations between Parts of a Whole. Another crucial consider-
ation is that all the associations with CNS will likely be high, whether
or not they have any direct causal connection with CNS. This is true
because cross-species variability of any sub-component of WT is nec-
essarily constrained by the variability of WT itself. These variables
are thus not truly independent of one another, thus invalidating the
traditional statistical tests applied to correlations. Because the spe-
cies in this study differ so widely in body size, and because FFWT,
MUSCLE, HEART, BONE, and CNS obviously cannot be larger
than their respective species body sizes, there will likely be a correla-
tion between any two of these components. The larger the variability
in WT across the species used in an analysis, the larger the correla-
tions will tend to be between sub-components of WT in that sample.
It is possible, however, to estimate the size of this effect. To do this a
set of 1000 dummy body component variables was calculated, to
which (for each species individually, and for each of the 1000 dummy
variables) a random proportion of that species WT was assigned.
These variables are therefore constrained only by the species WT,
and are random subcomponents of it. Correlations were then calcu-
lated between these dummy variables and CNS. This represents the
lower-bound, limiting case for the present data set. The degree to
which correlations between CNS and other (real) subcomponents of
WT might simply be explained by random chance can then be direct-
ly estimated through comparison to the distribution obtained for
these dummy variables.

The average size of the correlations between CNS and 1000 dum-
my body composition variables created by randomly assigning sub-
components of WT turns out to be remarkably high: r = 0.901 (rang-
ing from r = 0.731 to r = 0.968). The highest 5% of these ranged from
r = 0.947 to r = 0.968 (fig. 3A). Thus, any correlation between a body
component and CNS that is less than 0.947 should be not be consid-

ered statistically significant at the p ! 0.05 level. This analysis dem-
onstrates that the interpretation of correlations among subcompo-
nents of WT (or any single summary measure of a set of statistical
cases) is not a simple one. Correlations are going to be high regardless
of their true causal connections to CNS, simply because both mea-
sures are constrained by WT (which varies so much among species).

In addition, independent contrasts were also calculated for the
1000 dummy variables, and correlations [calculated via regression
through the origin as is appropriate for independent contrasts; Purvis
and Rambaut, 1995] were then calculated between these dummy
variable contrasts and CNS contrasts. The correlations between inde-
pendent contrasts of CNS and the 1000 dummy body composition
variables tended to be lower than for the non-independent contrast
calculations, averaging r = 0.649 (with a clearly skewed distribution
ranging from r = 0.201 to r = 0.916; fig. 3B). The highest 5% of these
ranged from r = 0.837 to r = 0.916, thus indicating that correlations
among independent contrasts that are lower than this would not be
significant at the p ! 0.05 level. It is important to note that if the
standard statistical assumptions were taken, any correlation equal to
or higher than r = 0.331 would be considered statistically significant
at the p ! 0.05 level (for N = 27, the number of independent con-
trasts).

Biased Sampling. The independent contrast method does not
control for the differences in the number of species sampled within
different orders of mammals [Smith, 1994]. To address this problem
within the constraints of the present dataset, the analyses were
repeated within the 3 orders of mammals (Rodentia, Chiroptera, and
Carnivora) for which several species were represented. This at least
allows us to determine the extent to which any relationship among
mammals appears simply because it is present in only one of the
orders with large numbers of data points. It is important to note here



52 Brain Behav Evol 2004;63:47–60 Schoenemann

Fig. 2. Phylogeny used for the independent comparison analysis in this study.
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Fig. 3. Histogram of correlations between
log CNS and 1000 dummy body component
variables (see text for details). A Raw corre-
lations. B Independent contrast correlations.
These are the range of correlations one ob-
tains between randomly-constructed vari-
ables and log CNS. In order for correlations
between real body components and CNS to
be considered statistically significant at the
p = 0.05 level, they would need to be as high
or higher than the top 5% of these distribu-
tions.
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that these sorts of phylogenetic controls do not constitute indepen-
dent confirmations of the hypothesis. They simply assess the extent
to which the relationships found in this data set can be explained by
phylogeny.

Data Analysis
To determine whether there are significant differences in the

strength of associations with CNS of different body components, the
data were analyzed in several different ways. First, correlations of
CNS with WT, FFWT, FAT, MUSCLE, HEART and BONE were
calculated for both log-transformations of the raw data and indepen-
dent contrasts. Second, multiple regression was used to estimate the
extent to which each variable was associated with CNS independent
of the others. It is important to keep in mind, however, that if a vari-
able does not show a significant multiple regression coefficient, this
does not demonstrate that the variable is functionally unrelated to
CNS. It could be that several of the variables correlate with CNS for
similar underlying reasons, and if so their independent contributions
to CNS could be small and insignificant. Nevertheless, it is of interest
to know if any variables do have significant independent contribu-
tions to CNS. Two multiple regressions were calculated: one using all
the variables that are independent components of body mass (i.e.,
FAT, MUSCLE, HEART, and BONE), as well as using just FAT and
FFWT. These were performed for both the log-transformed raw data
and the independent-constrast data. Regression through the origin
was used for all independent contrast analyses.

Results

Figures 4A and B plot independent-contrast data for
both log CNS vs. log FFWT (fig. 4A) as well as log CNS vs.
log FAT (fig. 4B). It is apparent from these that CNS is
much more tightly associated with FFWT than with FAT.
Table 2 lists the correlations for all the body components
in this study derived from the raw log-transformed data
(without phylogenetic controls) and the independent-con-
trast data. FFWT is not significantly different from WT
with respect to the strength of its association with CNS,
either for the raw correlations or the independent contrast
correlations. This suggests that these two measures would
not show large differences overall in estimates of mammal
EQ’s (but see further discussion below). This might be due
in part to the fact that FFWT makes up such a large pro-
portion of WT, but it cannot be the whole explanation
because both MUSCLE and BONE (which of course are
even smaller components of WT than is FFWT) correlate
just as strongly with CNS as FFWT and WT. The strength
of the correlation between CNS and a given sub-compo-
nent of body mass is not simply a question of how large a
proportion it is of WT.
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Fig. 4. Least-squares regression between independent contrasts for
log CNS and both: A log FFWT (log CNS = 0.629(log FFWT); r2 =
0.923), and B log FAT (log CNS = 0.368(log FAT); r2 = 0.736).
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FAT shows the lowest correlations of any of the vari-
ables with CNS (independent contrasts: r = 0.858, p !
0.021; raw correlations: r = 0.942, p ! 0.092). Although
these correlations are not small, it is important to note
that FAT correlates with FFWT even more strongly than
it does with CNS (independent contrasts correlations
between FAT and FFWT: r = 0.912, p ! 0.003; raw corre-
lations: r = 0.970, p ! 0.001). This pattern shows that it is
not simply that FAT has relatively lower correlations with
all body components, but rather that it selectively shows
lower correlations specifically with CNS. This raises the

Table 2. Correlations with log CNS using both raw correlations and
independent contrast correlations

Variable Raw
correlations

p of being
a random
component

independent
comparisons
correlations

p of being
a random
component

log WT 0.980 !0.001 0.961 !0.001
log FFWT 0.981 !0.001 0.961 !0.001
log MUSCLE 0.984 !0.001 0.959 !0.001
log HEART 0.981 !0.001 0.927 !0.001
log BONE 0.978 !0.001 0.960 !0.001
log FAT 0.942 0.092 0.858 !0.021

Probabilities are determined by comparison to the distribution
of correlations obtained with 1,000 dummy variables (see text for
details).

possibility that FAT correlates with CNS only because
both are correlated strongly with FFWT. This suspicion is
confirmed by the multiple regression analyses performed
using FFWT and FAT to predict CNS. Table 3 contains
the coefficients of this analysis for both the raw values and
independent contrast values. In both cases, FAT does not
make a significant contribution to predicting CNS values
independent of FFWT. The standardized coefficients in-
dicate that a change in 1 standard deviation in FFWT cor-
responds to almost an equivalent change in CNS (1.142
standard deviations for the raw values, 0.944 standard
deviations for independent contrasts) after controlling for
FAT. Additionally, although not statistically significant,
the coefficients for FAT are negative.

Table 4 shows multiple regression coefficients for pre-
dicting CNS from FAT and subcomponents of FFWT
(i.e., MUSCLE, HEART, and BONE). For both the raw
values and independent contrast values, MUSCLE shows
the largest independent contribution, whereas FAT does
not show a significant independent contribution in either
case. The independent contribution of HEART just bare-
ly misses significance at the p ! 0.05 level for raw values,
whereas BONE shows a significant independent contribu-
tion using independent contrasts. Even given a high
degree of multicolinearity among variables, the pattern of
FAT being the poorest predictor and MUSCLE being the
best is consistent.

When calculated separately within both the winter-col-
lected (Brazilian and Virginian) and summer-collected
(Alaskan) sub-samples, the patterns mirror those found
for the whole dataset, with FFWT consistently showing
higher correlations with CNS than does FAT, and multi-
ple regression coefficients (table 5) showing large inde-
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Table 3. Multiple regression coefficients
predicting log CNS from log FAT and
log FFWT

Coefficient Std. error Std. coeff. t value p value

Raw values
log FFWT 0.910 0.104 1.142 8.768 !0.0001
log FAT –0.106 0.083 –0.166 –1.276 0.2101
Intercept –1.379 0.153 –1.379 –9.012 !0.0001

Independent contrast values
log FFWT 0.694 0.088 0.944 7.913 !0.0001
log FAT –0.047 0.057 –0.109 –0.814 0.4235

Table 4. Multiple regression coefficients
predicting log CNS from log MUSCLE,
log HEART, log BONE, and log FAT

Coefficient Std. error Std. coeff. t value p value

Raw values
log MUSCLE 0.693 0.249 0.892 2.782 0.0087
log HEART 0.430 0.213 0.478 2.017 0.0517
log BONE –0.167 0.253 –0.208 –0.660 0.5138
log FAT –0.115 0.075 –0.181 –1.534 0.1342

Independent contrast values
log MUSCLE 0.608 0.226 0.843 2.691 0.0130
log HEART –0.324 0.198 –0.447 –1.640 0.1147
log BONE 0.287 0.122 0.431 2.341 0.0283
log FAT 0.018 0.047 0.042 0.383 0.7049

Table 5. Multiple regression coefficients
predicting log CNS from log FAT and
log FFWT calculated separately for species
collected in Summer vs. Winter

Coefficient Std. error Std. coeff. t value p value

Raw values
Summer (n = 11)

log FFWT 1.211 0.249 1.495 4.867 0.0012
log FAT –0.309 0.181 –0.523 –1.703 0.127
Intercept –1.889 0.419 –1.889 –4.510 0.002

Winter (n = 27)
log FFWT 0.797 0.137 1.003 5.814 !0.0001
log FAT –0.015 0.113 –0.023 –0.131 0.8971
Intercept –1.224 0.191 –1.224 –6.397 !0.0001

Independent contrast values
Summer (n = 7)

log FFWT 0.881 0.415 1.113 2.125 0.0869
log FAT –0.081 0.316 –0.131 –0.256 0.8082

Winter (n = 19)
log FFWT 0.613 0.110 0.851 5.561 !0.0001
log FAT 0.013 0.074 0.033 0.177 0.8619
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Table 6. Multiple regression coefficients
predicting log CNS from log FAT and
log FFWT calculated within orders of
mammals

Coefficient Std. error Std. coeff. t value p value

Raw values
Carnivora (n = 6) 

log FFWT 0.606 0.303 0.843 2.002 0.1391
log FAT 0.07 0.198 0.148 0.351 0.7491
Intercept –0.603 0.588 –0.603 –1.026 0.3805

Chiroptera (n = 9) 
log FFWT 0.793 0.323 1.016 2.459 0.0492
log FAT –0.054 0.217 –0.103 –0.250 0.8108
Intercept –1.211 0.402 –1.211 –3.012 0.0236

Rodentia (n = 19)
log FFWT 0.895 0.127 1.173 7.076 !0.0001
log FAT –0.109 0.093 –0.194 –1.168 0.2600
Intercept –1.394 0.200 –1.394 –6.965 !0.0001

Independent contrast values
Carnivora (n = 5) 

log FFWT 0.709 0.163 1.171 4.351 0.0224
log FAT –0.039 0.108 –0.084 –0.363 0.7404

Chiroptera (n = 7) 
log FFWT 0.448 0.154 0.738 2.919 0.0331
log FAT 0.129 0.097 0.348 1.332 0.2402

Rodentia (n = 11) 
log FFWT 0.722 0.146 0.672 4.958 0.0008
log FAT –0.113 0.089 –0.287 –1.272 0.2352

pendent associations of CNS with FFWT and only small
and non-significant independent associations with FAT
(although in the independent contrasts for the Summer
sub-sample, for which there were only 7 contrasts possi-
ble, the independent association of FFWT with CNS did
not quite reach statistical significance: p = 0.0869).

For completeness, multiple regressions predicting CNS
from FFWT and FAT were carried out separately within
each of the geographic sub-samples of the winter-collected
species (those collected from Brazil vs. those from Virgin-
ia). The same patterns were once again found, with FFWT,
but not FAT, showing significant independent associations
with CNS (in the interests of space, these values are not
reported here). Thus, it would appear that these patterns are
broadly found, and are not solely explained by either geo-
graphic location nor seasonality of collection.

Lastly, table 6 shows the multiple regressions predict-
ing CNS from FFWT and FAT carried out separately
within each of the orders of mammals represented by
more than one species (Carnivora, Chiroptera, and Ro-
dentia). In none of these orders does FAT show a statisti-
cally significant independent contribution to predicting
CNS, and in only one case (Carnivora using raw values;
N = 6) does FFWT fail to reach significance. Thus, the

pattern shown across the whole dataset cannot easily be
attributed to its appearance in only one order. This does
not constitute proof that the pattern holds within the oth-
er mammalian orders, however.

Discussion

The fact that dummy sub-component variables repre-
senting random percentages of weight (WT) have such
high correlations (for either log-transformed raw or inde-
pendent contrast data) illustrates how important it is to
think carefully about the statistical assumptions one
makes in comparative studies when using variables that
are sub-components of a third variable that differs so
greatly across species. The huge discrepancy between
what the present randomization study suggested was sta-
tistically significant for this data (r 6 0.837 for indepen-
dent contrast data with n = 27) versus what would be con-
sidered statistically significant under standard assump-
tions (r 6 0.331) shows that this can be a very important
consideration. Future comparative studies investigating
associations between variables that are sub-components
of weight need to take this fact into account [e.g., the ‘ex-



Brain Size Scaling and Body Composition Brain Behav Evol 2004;63:47–60 57

pensive tissue hypothesis’; Aiello and Wheeler, 1995;
Aiello and Bates, 1998].

The finding that total fat (FAT) is less strongly associ-
ated with the weight of the central nervous system (CNS)
than are fat-free weight (FFWT), muscle weight (MUS-
CLE), heart weight (HEART), and bone weight (BONE)
has never been empirically demonstrated before with any
data set, although it is consistent with what we would
expect given that fat is not highly innervated. FFWT is
only slightly (and non-significantly) more highly corre-
lated with CNS overall. However, given that FAT does
not appear to have an independent association with CNS,
whereas FFWT does, and because by definition FAT +
FFWT (+ CNS) = WT, it would appear that WT does not
deserve equal theoretical status with FFWT with respect
to CNS scaling.

The fact that these patterns hold within seasonality/
location subgroups suggests that these variables do not
entirely explain the results here. However, given the con-
flation of seasonality and location in this sample, the pos-
sibility that seasonality within a given geographical locale
might swamp the effects, or that seasonality or location
might both have important effects on the associations,
cannot be addressed with this data.

To what extent are the differences between FAT and
FFWT (with respect to the strength of their associations
with CNS) due to FAT being inherently more variable
(and having larger measurement error) than FFWT? To
what extent can we be confident that FAT values used in
this study are truly representative of their respective spe-
cies? It would appear that species really do vary with
respect to relative fattiness. The possibility that FAT
might be more difficult to measure accurately than other
components seems unlikely given that the measurement
of fat was done chemically by ether extraction [see Pitts
and Bullard, 1968], rather than by blunt dissection (as was
done with, e.g., muscle mass) which would appear to be an
inherently less precise method. There was some indica-
tion in the present dataset that FAT might show slight
seasonality (though, again, this was conflated with loca-
tion), and certainly species which hibernate generally tend
to put on fat for the winter months. However, whereas %
FAT is significantly associated with log WT in this dataset
(r2 = 0.405, p 1 0.01, n = 18 independent comparisons), it
is not significantly associated with seasonality/location.
This indicates that WT explains more variability in fatti-
ness than the seasonality/location variable. Furthermore,
the pattern of associations among FFWT, FAT, and CNS
remained the same within seasonality/location sub-sam-
ples, which suggests that seasonality does not entirely

explain the patterns found (even if seasonality cannot be
ruled out completely given limitations in the dataset). If
fat is particularly variable across individuals within a spe-
cies, then sampling error might affect FAT more than oth-
er components. It is true that humans can gain and lose fat
reasonably rapidly without presumably changing their
brain size, but this is also true of lean body mass (e.g.,
lifting weights adds muscle mass fairly effectively). Pitts
and Bullard report standard deviations for different body
components for 11 species with large enough sample sizes,
and these suggest that FAT is relatively more variable
within species than FFWT (the within-species coefficient
of variation for FAT averages 43.6%, compared to 17.9%
for FFWT + CNS). However, if within-species individual
variation in FAT lead to significant sampling error in esti-
mating species FAT in this sample, this should be more of
a problem for species represented by few individuals than
for species represented by many. There should be a nega-
tive correlation between (1) the number of individuals
sampled in a given species and (2) the absolute value of
residuals of FAT on WT (which represents the degree to
which a species FAT differs from the average value for a
species of that WT). For the present dataset, this associa-
tion is very small and statistically non-significant (r =
0.064, p = 0.70). For all these reasons, the lack of associa-
tion between FAT and CNS (independent of FFWT)
would appear to be genuine.

As was mentioned in the introduction, although corre-
lation does not prove direct causation we are justified in
asking what causal influences might explain the associa-
tions that are apparent. We cannot begin to unravel the
web of influences unless we consider how the current cor-
relations might fit into some causal picture, just as Jeri-
son’s [1973], Martin’s [1981], and Armstrong’s [1983],
hypotheses spurred further refinement of this question.

Assuming that the present findings can be generalized
beyond this data set, they are not in conflict with the
hypothesis [Martin, 1981; Armstrong, 1983] that meta-
bolic rate is the ultimate evolutionary cause of the brain }
body weight scaling relationship. They do suggest addi-
tional explanations, however. Within humans at least,
metabolic rate is more highly correlated with FFWT than
it is with WT [Ravussin et al., 1982; Halliday et al., 1983;
Jensen et al., 1988; Owen, 1988; Salomon et al., 1992].
There is apparently no comparative analysis of this ques-
tion, but assuming this pattern holds across species it sug-
gests that metabolic rate might be related to brain size not
in a direct causal sense (as in Martin, 1981), but only as a
consequence of both of these being causally related to
FFWT. In this model, greater FFWT would allow for –
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but not require – greater brain mass, and would at the
same time directly cause an increase in total metabolic
rate. This would be consistent with the finding that neo-
natal brain size is not related to basal metabolic rate when
differences in adult WT are taken into account [Pagel and
Harvey, 1988], although variation in gestation length may
also allow species to adjust brain size even if maternal
energy budgets are a key constraint [Martin, 1981, 1995;
Martin and MacLarnon, 1985]. It is important to recog-
nize that body weight does not perfectly predict brain
weight in mammals. The r = F0.95 correlation typically
found in fact corresponds to F10-fold variation in brain
weight for a given body weight [Martin, 1981; Schoene-
mann, 2001], which means that a variety of other in-
fluences are at play.

If the confidence intervals on the interspecies relation-
ships between brain size and WT were small enough to
definitely exclude either the prediction of body surface
area (e.g., slope of 0.67) or metabolic rate (slope of 0.75),
we might be in a better position to choose between these
competing hypotheses. Earlier analyses [e.g., Martin,
1981] apparently excluded the body surface area hypothe-
sis on this very basis, but the current best estimate is
actually closer to that predicted by the body surface area
hypothesis [Harvey and Krebs, 1990]. However, it is like-
ly that a number of influences are at work here, such that
we cannot use the value of the slope by itself to determine
causality [Deacon, 1990].

In any case, it is important to stress that for both the
metabolic rate and body surface area hypotheses, the
direction of the causal arrows explaining evolutionary
changes in brain size could point in either direction. Brain
size might be caused by evolutionary changes in metabol-
ic rate and/or body surface area, but there is no clear theo-
retical expectation that this must be the case. It is equally
possible, a priori, that evolutionary changes in brain size
cause changes in metabolic rate and/or body surface area.
That is, the selection might always (or predominantly) be
operating on brain size for behavioral reasons (e.g., behav-
ioral complexity, flexibility, or whatever), but that
changes in brain size require (in the case of increases) or
allow (in the case of decreases) changes in metabolic rate
and/or body surface area [see also Schoenemann, 2001]. A
correlation would be apparent between these other physi-
ological variables and brain size, but not because they are
causing brain size variation. A larger body size might be
required to support a larger brain, perhaps because of the
larger total metabolic resources available to an animal
with a larger body, but brain size could still be under the
most direct selection. Given that brain tissue is very meta-

bolically expensive, if an increase in brain size was select-
ed for, it is reasonable to suppose that overall metabolic
rate would be affected. Unfortunately nothing in this
study, nor in other studies so far published, can demon-
strate which way the causal arrows point. This is obvious-
ly an important question for future research.

Implications for Explaining Differences in Brain Size 
With respect to comparative studies of brain size scal-

ing, WT is such a good predictor of FFWT that the slope
of the regression relating CNS and FFWT is only slightly
steeper than the slope relating CNS and WT (0.629 vs.
0.619, respectively, for this dataset). Because, as was
pointed out above, there are a priori reasons to suppose
that FFWT might share a particularly close association
with CNS, and because FFWT but not FAT (the other
component that sums to WT) appears empirically to be
associated with CNS, estimating encephalization quo-
tients [EQ’s; Jerison, 1973] should probably more proper-
ly be done using FFWT. However, because FFWT is
much more difficult to estimate than WT, and because
the differences in EQ’s are likely to be small between the
two methods, this is impractical even if theoretically more
appropriate. There might nevertheless be subtle but im-
portant differences in EQ estimates, which could be sig-
nificant in some cases given the vast range of FFWT and
WT in mammals, and this should be kept in mind when
comparing brain sizes across species.

The extent to which this finding might account for the
increased Neanderthal cranial capacities, which average
157 cm3 greater than modern humans [Wood and Col-
lard, 1999], is an interesting question. Barring extensive
primate data on body composition and brain size, any
estimates will obviously have to be considered tentative,
and serve only to give some idea of the potential size of
the effect. Using the least-squares regression of brain
weight on body weight for Stephan et al.’s [1981] primate
data, one can calculate the average (expected) difference
in brain weight for two primates weighing the same as
Neanderthal and modern humans and use this to estimate
cranial capacity differences [cranial capacity is F14%
larger than brain volume; Count, 1947; Hartwig-Scherer,
1993; Kappelman, 1996]. Depending on what values we
use for Neanderthal and modern human WT [Wilmore
and Behnke, 1969, 1970; Wood and Collard, 1999],
between 30–80% of the absolute difference in cranial
capacity can be explained by WT alone. However, if
Neanderthals had lower percent fat than modern humans
[as implied by arguments in Dubois, 1921; Trinkaus and
Howells, 1979; Holloway, 1981, 1985], their WT differ-
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ence would not be as large as their FFWT difference. It
does appear that modern humans tend towards the high
end of percent fat among mammals [the regression in fig-
ure 1 predicts modern humans should be F15% fat –
although the 95% confidence intervals range from 10 to
20% – whereas humans actually average more than 20%,
Wilmore and Behnke, 1969, 1970]. If Neanderthal aver-
aged only 15% fat, their FFWT would be F4 kg larger
than expected for their WT; if they averaged 10% fat,
their FFWT would be F8 kg larger than expected. Adding
these additional FFWT values to the Neanderthal calcula-
tions suggest that perhaps an additional 20–25% of the
actual difference in cranial capacity might be explained
beyond WT differences alone, and that somewhere be-
tween 60 and 100% of the total cranial capacity difference
might be explained this way. It cannot, however, be
emphasized enough that these estimates are subject to
large possible errors, and simply serve to give some idea of
the possible magnitude of the effect. Note also that Nean-
derthals might simply have large brains because they are
cold-adapted [populations in colder regions have larger
cranial volumes – and presumably larger brains; Beals et
al., 1984], or the specimens that have been found may be a
biased sample.

It is not clear how much of the sex difference in brain
weight [F140 g in one European-derived sample; Ho et
al., 1980] might be explained by the substantially larger
FFWT difference between the sexes (F15 kg) than WT
differences [Wilmore and Behnke, 1969, 1970]. Ankney
[1992] showed that about 16% of the brain weight differ-
ence is explained by WT differences [see also Falk et al.,

1999]. Estimating from primate scaling trends as in the
Neanderthal case, the FFWT difference might explain
another F16%. However, because no study reports
FFWT and brain size estimates for the same subjects, this
estimate is little more than a guess, even though the sex
difference in FFWT would appear to be relevant.

In conclusion, FFWT is strongly correlated with CNS
independent of FAT, but the converse is not true. This
relationship does not appear to be affected by sample
characteristics such as different numbers of males vs.
females, location or season of collection, or phylogenetic
effects. Subcomponents of FFWT: MUSCLE, HEART,
and BONE all show higher associations with CNS than
does FAT. Because FFWT + FAT = WT, it would appear
that the relationship between brain size and weight is
actually the result of brain size scaling with FFWT. This
analysis substantiates long-standing assumptions about
brain scaling that have in fact never been tested. This
might explain a portion of the Neanderthal – modern
human difference in brain size, as well as a portion of the
sex differences in brain size.

Acknowledgements

Several of the ideas in this paper were originally presented at the
1995 meeting of the American Association of Physical Anthropolo-
gists, Oakland, California. This paper has benefited from discussions
with Vincent Sarich and from comments on earlier drafts of this
paper by C. Davison Ankney, Joseph Felsenstein, and Reina Wong.
Any errors that remain are of course my own.

References

Abbott S, Trinkaus E, Burr DB (1996) Dynamic
bone remodeling in later Pleistocene fossil
hominids. Am J Phys Anthropol 99:585–601.

Aiello LC, Bates N (1998) The expensive tissue
hypothesis revisited. Am J Phys Anthropol
Suppl 26:62.

Aiello LC, Wheeler P (1995) The expensive tissue
hypothesis: The brain and the digestive system
in human and primate evolution. Curr Anthro-
pol 36:199–221.

Ankney CD (1992) Sex differences in relative brain
size: The mismeasure of woman, too? Intelli-
gence 16:329–336.

Armstrong E (1983) Relative brain size and metab-
olism in mammals. Science 220:1302–1304.

Beals KL, Smith CL, Dodd SM (1984) Brain size,
cranial morphology, climate, and time ma-
chines. Curr Anthropol 25:301–330.

Blalock HM (1970) Social Statistics, Revised Sec-
ond Edition. New York: McGraw-Hill.

Campbell NA (1993) Biology, Third Edition. Red-
wood City, CA: Benjamin/Cummings.

Count EW (1947) Brain and body weight in man:
Their antecedents in growth and evolution.
Ann N Y Acad Sci 46:993–1122.

Deacon TW (1990) Fallacies of progression in theo-
ries of brain-size evolution. Int J Primatol 11:
193–236.

Dubois E (1921) On the significance of the large
cranial capacity of Homo Neanderthalensis.
Proc Kon Akad Wetenschappen 23:1271–
1288.

Falk D, Froese N, Sade DS, Dudek BC (1999) Sex
differences in brain/body relationships of Rhe-
sus monkeys and humans. J Hum Evol 36:233–
238.

Felsenstein J (1985) Phylogenies and the compara-
tive method. Am Nat 125:1–15.

Gould SJ (1981) The Mismeasure of Man. New
York: Norton.

Halliday D, Hesp R, Stalley SF, Warwick P, Alt-
man DG, Garrow JS (1983) Resting metabolic
rate, weight, surface area and body composi-
tion in obese women. Int J Obesity 3:1–6.

Hartwig-Scherer S (1993) Body weight prediction
in early fossil hominids: towards a taxon-‘inde-
pendent’ approach. Am J Phys Anthropol 92:
17–36.

Harvey PH, Krebs JR (1990) Comparing brains.
Science 249:140–146.

Ho K-c, Roessmann U, Straumfjord JV, Monroe G
(1980) Analysis of brain weight. II. Adult brain
weight in relation to body height, weight, and
surface area. Arch Pathol Lab Med 104:640–
645.

Holloway RL (1981) Volumetric and asymmetry
determinations on recent hominid endocasts:
Spy I and II, Djebel Ihroud I, and the Sale
Homo erectus specimens, with some notes on
Neanderthal brain size. Am J Phys Anthropol
55:385–393.



60 Brain Behav Evol 2004;63:47–60 Schoenemann

Holloway RL (1985) The poor brain of Homo
sapiens neanderthalensis: See what you please...
In: Ancestors: The Hard Evidence (Nelson E,
ed), pp 319–324. New York: Alan R. Liss.

Jensen MD, Braun JS, Vetter RJ, Marsh HM
(1988) Measurement of body potassium with a
whole-body counter: relationship between lean
body mass and resting energy expenditure.
Mayo Clin Proc 1988:864–868.

Jerison HJ (1973) Evolution of the Brain and Intel-
ligence. New York: Academic Press.

Jerison HJ (1985) Animal intelligence as encephali-
zation. Phil Trans R Soc Lond, Ser B 308:21–
35.

Kappelman J (1996) The evolution of body mass
and relative brain size in fossil hominids. J
Hum Evol 30:243–276.

Lehninger AL (1982) Principles of Biochemistry.
New York: Worth Publishers.

MacLarnon A (1996) The scaling of gross dimen-
sions of the spinal cord in primates and other
species. J Hum Evol 30:71–87.

Manouvrier L (1903) Conclusions générales sur
l’anthropologie des sexes et applications so-
ciales. Revue de l’École d’Anthropologie 13:
405–423.

Martin RD (1981) Relative brain size and basal
metabolic rate in terrestrial vertebrates. Nature
293:57–60.

Martin RD (1995) Phylogenetic aspects of primate
reproduction: The context of advanced mater-
nal care. In: Motherhood in Human and Non-
human Primates: Biosocial Determinants
(Pryce CR, Martin RD, Skuse D, eds). Basel:
Karger.

Martin RD, MacLarnon AM (1985) Gestation peri-
od, neonatal size, and maternal investment in
placental mammals. Nature 313:220–223.

McNab BK, Eisenberg JF (1989) Brain size and its
relation to the rate of metabolism in mammals.
Am Nat 133:157–167.

Owen OR (1988) Resting metabolic requirements
of men and women. Mayo Clin Proc 63:503–
510.

Pagel MD, Harvey PH (1988) How mammals pro-
duce large-brained offspring. Evolution 42:
948–957.

Pagel MD, Harvey PH (1989) Taxonomic differ-
ences in the scaling of brain on body weight
among mammals. Science 244:1589–1593.

Pitts GC, Bullard TR (1968) Some interspecific
aspects of body composition in mammals. In:
Body Composition in Animals and Man, pp
45–70. Washington, D.C.: National Academy
of Science, Pub No 1598.

Purvis A, Rambaut A (1995) Comparative analysis
by independent contrasts (CAIC): an Apple
Macintosh application for analyzing compara-
tive data. Comp Appl Biosci 11:247–251.

Ravussin E, Burnand B, Schultz I, Jequier E (1982)
Twenty-four-hour energy expenditure and rest-
ing metabolic rate in obese, moderately obese,
and control subjects. Am J Clin Nut 35:566–
573.

Ruff CB, Walker A, Trinkaus E (1994) Postcranial
robusticity in Homo. III: Ontogeny. Am J Phys
Anthropol 93:35–54.

Ruff CB, Trinkaus E, Walker A, Larsen CS (1993)
Postcranial robusticity in Homo. I: Temporal
trends and mechanical interpretation. Am J
Phys Anthropol 91:21–53.

Salomon F, Cuneo RC, Hesp R, Morris JF, Poston
L, Sönksen PH (1992) Basal metabolic rate in
adults with growth hormone deficiency and in
patients with acromegaly: Relationship with
lean body mass, plasma insulin level and leuco-
cyte sodium pump activity. Clin Sci 83:325–
330.

Schoenemann PT (2001) Brain scaling, behavioral
ability, and human evolution. Behav Brain Sci
24:293–295.

Smith RJ (1994) Degrees of freedom in interspe-
cific allometry: An adjustment for the effects of
phylogenetic constraint. Am J Phys Anthropol
93:95–107.

Stephan H, Frahm H, Baron G (1981) New and
revised data on volumes of brain structures in
Insectivores and Primates. Folia Primatol 35:
1–29.

Trinkaus E (1997) Appendicular robusticity and
the paleobiology of modern human emergence.
Proc Natl Acad Sci U S A 94:13367–13373.

Trinkaus E, Howells WW (1979) The Neander-
thals. Sci Am 241:118–133.

Wilmore JH, Behnke AR (1969) An anthropomet-
ric estimation of body density and lean body
weight in young men. J Appl Physiol 27:25–
31.

Wilmore JH, Behnke AR (1970) An anthropomet-
ric estimation of body density and lean body
weight in young women. Am J Clin Nut 23:
267–274.

Wood B, Collard M (1999) The human genus.
Science 284:65–71.


