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Abstract

We develop a novel Lagrangian reference frame diffeomorphic image and landmark registration method. The algorithm uses the
fixed Langrangian reference frame to define the map between coordinate systems, but also generates and stores the inverse map from
the Eulerian to the Lagrangian frame. Computing both maps allows facile computation of both Eulerian and Langrangian quan-
tities. We apply this algorithm to estimating a putative evolutionary change of coordinates between a population of chimpanzee and
human cortices. Inter-species functional homologues fix the map explicitly, where they are known, while image similarities guide the
alignment elsewhere. This map allows detailed study of the volumetric change between chimp and human cortex. Instead of basing
the inter-species study on a single species atlas, we diffeomorphically connect the mean shape and intensity templates for each group.
The human statistics then map diffeomorphically into the space of the chimpanzee cortex providing a comparison between species.
The population statistics show a significant doubling of the relative prefrontal lobe size in humans, as compared to chimpanzees.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The relationship between the primate and the human
brain has intrigued researchers in evolution, biology and
medicine since at least the 19th century (Huxley et al.,
1874; Thompson, 1917) and remains an area of active re-
search (Deacon, 1997; Schoenemann et al., 2004; Essen,
2004a). Understanding functional and anatomical inter-
species correspondences is fundamental to connecting
human and animal research. Chimpanzee language, dis-
ease and behavioral studies are often used as a starting
point for understanding human medical conditions.
These studies become more valuable as our ability to re-
late them to human subjects increases. Volumetric med-
ical image registration permits one to make inter-species
neuroanatomical comparisons between subjects by using
1361-8415/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
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known functional and structural constraints. Further-
more, diffeomorphic transformations (Miller et al.,
2002) between species (Essen et al., 2001) may aid in
understanding the evolutionary process.

Diffeomorphisms permit comparisons under the
hypothesis that the topology of the deforming anatomy
must be preserved. Transformations are differentiable
and guaranteed to be one-to-one and onto: for every po-
sition in one image, there is a single corresponding posi-
tion in the second image. These properties also mean
that the transformations may be composed. If we have
a transformation taking I to J and a transformation tak-
ing J to K, we also have both I to K and K to I through
composition. The diffeomorphic framework also sup-
plies a rigorous mathematical metric between anato-
mies, a valuable quantitative measure of the distance
between images.

Landmarking is an invaluable tool for gaining ana-
tomically correct image registrations in cases where
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noise, lack of features or pure anatomical complexity
make automated methods unreliable (Thompson and
Toga, 1998). Bookstein�s point-based thin-plate splines
revealed the power of this approach for studies of hu-
man and non-human shape variability (Bookstein,
1992). Previously, diffeomorphic image matching and
diffeomorphic landmark matching were solved by inde-
pendent algorithmic frameworks. Image matching solu-
tions are found in the Eulerian domain in Miller and
Christensen�s work (Miller et al., 2002; Christensen
et al., 1996), while landmark matching is solved in the
Lagrangian domain by Joshi and Miller (2000) or with
interpolating splines (Twining and Marsland, 2003).
Our algorithm for diffeomorphic registration solves both
the image and landmark matching problems in the
Lagrangian reference frame, while generating the inverse
transformation. This allows one to solve either land-
mark or image matching independently or to use a
weighted combination of both image and landmark sim-
ilarities. Landmarks are essential for making a meaning-
ful connection between closely related species.

Historically, in situ research on primate brain anat-
omy and function was based on unethical treatment of
captive animals. Current technology in magnetic reso-
nance imaging (MRI) allow both the function and the
structure of the brain to be non-invasively measured,
in a humane environment, without direct detriment to
the subject. Image-based research in this area is often fo-
cused on the surface view of the cortex (Essen et al.,
1998), promoted by Van Essen. Surface-based methods
focus on the basic computational structure of the brain:
the thin, folded layer of gray matter. However, these
methods ignore important internal structures, such as
the ventricles, and must rely on topologically correct
cortical surface segmentations (Han et al., 2003). Van
Essen uses 12 (6 per hemisphere) functionally based ana-
tomical landmarks to constrain inter-species surface
deformations (Essen, 2004b) for an analysis of compet-
ing visual cortex partitionings. These landmarks map
the domains such that one may visualize the relative def-
icit or surfeit of functional areas between species, as well
as the relative topology of the functional regions (Essen,
2004a). In contrast, our study uses extant volumetric

and surface-based knowledge of anatomical and
functional similarities between the human and the chim-
panzee cortex. These landmarks enable us to reverse-
engineer a plausible topology preserving evolutionary
transformation.

Our scientific goal is both to generate the evolution-
ary transformation and to study volumetric cortical
chimp–human structural differences that it reveals. The
study is based on MRI, diffeomorphic image registration
and standard cortico-functional relationships between
chimp and human anatomy. Between species functional
homologues are held as constant across individuals and
are used to guide structures of interest into alignment.
The structural data on the cortex is captured in MRI
images taken from 3 male and 3 female chimps and 6
male and 6 female humans. Mean shape and intensity
atlases are computed for each dataset. These atlases
are connected diffeomorphically. We then study the vol-
umetric shape differences implied by the correspon-
dence. The significant structural differences and the
map itself may be used to assess hypotheses regarding
evolutionary changes between these species, as well as
provide putative models for further investigation of ana-
tomical differences.

Our technical contribution is a novel, fast estimate to
the geodesic metric mapping equations (Miller et al.,
2002; Beg et al., 2005). The method computes second-or-
der optimal-in-time geodesic diffeomorphic transforma-
tions in the original volumetric domain of the images.
Our algorithm for computing the push-forward transfor-
mation (in addition to the pull-back) has two advanta-
ges. First, combined with the traditional pull-back, it
grants facile movement between the Eulerian and
Lagrangian reference frames. Computation in the
Lagrangian frame is more numerically stable than the
Eulerian frame (Donea et al., 2004) thereby allowing lar-
ger time steps to be used. Second, we gain numerical effi-
ciency and locally optimal-in-time estimates via the
modified midpoint rule, yielding a robust parameteriza-
tion of the geodesic path. The Lagrangian frame is also
more natural for landmark registration. Finally, our
metric matching algorithm employs both landmarks
and image similarity in the optimization scheme. We ap-
ply this image registration tool to the problem of con-
necting anatomical templates, to our knowledge an
unstudied aspect of Grenander�s computational anat-
omy (Grenander, 1993).
2. Image registration methodology

This section briefly reviews deformable image regis-
tration methods based on continuum models and details
the diffeomorphic model used in our study. Computa-
tional anatomy group theory (Grenander and Miller,
1998) is our particular focus.

The group theory tells one how to move between
group elements and gives group specific geodesic paths
and metrics between those elements. When used in the
context of image registration, the theory allows one to
compute distances between anatomies, to compose
deformable solutions in series and to find large deforma-
tion mappings without introducing tears or overlaps.
These qualities are essential for solving the problem of
finding connections between distinct, but mappable pop-
ulations, such as that of the human and primate. The
benefits of the group theory in computational anatomy
and, in particular, for connecting anatomies are high-
lighted here:



Table 1
Notation in the body of the paper

X : Domain in Rd

I : Fixed image
J : Moving image
x: Coordinates of material points in the Lagrangian domain
y: Coordinates in the spatial or Eulerian domain
t : Time or simulation time
/ : Pull-back coordinate map
/�1 : Push-forward coordinate map
ðpI

i ; q
J
i Þ : Matching landmarks in I and J, respectively
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� The invertibility of diffeomorphisms is needed to
establish natural transformations from image I to J

and from J to I.
� Composability allows us to combine multiple trans-

formations in series. We use this property of diffeo-
morphisms to connect anatomies.
� Distances (or metrics) that are symmetric and satisfy

the triangle inequality are needed for making unbi-
ased measurements of the deformation between anat-
omies. This is essential for finding ‘‘average’’
anatomy and for quantifying growth and
development.

All of these qualities are important for the study in
this paper. First, however, we must develop an efficient
algorithm to guarantee that we have invertibility, the
ability to compose and robust distance measurements.
We develop an efficient algorithm for estimating diffeo-
morphisms and their distances below.

2.1. Overview of algorithmic contribution

We develop a Lagrangian Push-Forward (LPF)
method for finding diffeomorphic geodesics. Our tech-
nique contrasts with greedy time-independent methods
given by Christensen et al. (1996) and Bro-Nielsen and
Gramkow (1996) for images and Joshi and Miller
(2000) for landmarks. Christensen solves the image
matching problem in the Eulerian domain, while Joshi
solves in the Lagrangian domain. Neither algorithm
explicitly takes the time dimension into account, nor
do they generate the inverse transformation directly.
We solve both landmark and image problems, either
independently or as a balanced variational optimization,
in the fixed Lagrangian reference frame. The inverse
transformation is derived from the solution in the
Lagrangian frame. We gain smoothness in time through
a stable numerical method estimating the velocity over a
small time increment. These tools combine to give a ro-
bust and still efficient estimate of geodesic distance. Fur-
thermore, our method enables direct movement between
the static and moving reference frames, allowing both
Lagrangian quantities (such as the Jacobian) and Eule-
rian quantities (such as the arc length of the geodesic)
to be easily measured. The notation in the paper is sum-
marized in Table 1.

2.2. Background

2.2.1. Static reference frame

High-dimensional image registration with continuum
mechanical regularization (Bajcsy and Broit, 1982; Gee
et al., 1993; Miller et al., 1993; Christensen et al., 1996)
maps anatomy into a common atlas space through a
physical deformation model. The goal is to locate a trans-
formation that provides correspondence between the
images under consideration, a fixed image, I, and a mov-
ing image, J. The variational optimization problem as
formulated by Gee (1999), following Bajcsy�s pioneering
work (Bajcsy and Broit, 1982), finds the solution u* as,

u�ðxÞ ¼ argmin u PRðuÞ þ
Z

X
kIðxÞ � J � /ðxÞk2dX

� �
.

ð1Þ
The PR term regularizes u(x) explicitly. Here, /(x) = y
and the deformation, u(x) = y � x, is measured with re-
spect to the original configuration. This elastostatic for-
mulation warps the moving image into the reference
frame provided by I by computing the transformation
from I to J. The map /: I! J gives the pull-back of J

to the space of I, ~J ¼ Jðxþ uðxÞÞ ¼ J � /ðxÞ. This
change of coordinates is not guaranteed to have an in-
verse. Many points may map to one point or large or
small scale folding may occur.

2.2.2. Grenander�s computational anatomy

Computational anatomy uses flows to reposition
anatomy as a function of time, J(/(x, t)), through a
map /. The map is an invertible diffeomorphic transfor-

mation defined on X, /:X · t 2 [0,1]! X. Note that the
transformation is fixed to be the identity along the
border of X, such that /(dX,t) = dX. This change of
variables smoothly repositions J within space. At con-
vergence, (time t = 1), I(x) = J � /(x,1) and J(y) =
I � W(y, 1) with /(x, t) = W(y, s) for all t = 1 � s. Diffeo-
morphisms also require /�1 � / = Id. The maps may
match landmarks as well as images. A landmark is
defined as a pair ðpI

i ; q
J
i Þ of a priori corresponding sub-

domains on X where the superscript reflects the anatomy
to which the landmark is associated.

The variational matching problem is given here with
both image and landmark similarities,

inf
v

Z 1

0

kvk2
L þ

Z
X
jIðxÞ � J � /ðxÞj2dX

�

þ
X

i

1

ri
ð/ðqÞJi � pI

i Þ
2

�
dt. ð2Þ

The first term gives the deformation energy, where the
choice of functional norm i Æ iL specifies one�s solution
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space and will be discussed below. The velocity, v, gives
the speed and trajectory of particles moving through a
spatial or Eulerian reference frame. The ri is variance
for the landmarks. The landmark matching approaches
exactness as r! 0. Both Eulerian and Lagrangian refer-
ence frames will be important for our diffeomorphic im-
age registration algorithm.

This study uses the large deformation metric mapping
framework to solve problems of the type in Eq. (2). The
theory for these methods was developed largely by
Grenander and Miller (1998), Miller et al. (2002) and
is connected to work in fluid dynamics (Marsden
and Ratiu, 1999; Holm et al., 2004; Hirani et al., 2001)
and o.d.e.s (Arnold and Khesin, 1992. Grenander de-
fines the anatomical orbit (or shape space) of the atlas
or reference anatomy, I, as the set of transformations
that map I diffeomorphically to all possible anatomies,
{Ji}. For each Ji, we have I � /�1

i ¼ J i and an associated
metric telling us how far J is from I. The set of transfor-
mations, {/i}, is chosen to be a mathematical group.
Conveniently, there is a group theory associated with
viscous fluid flow, the infinite-dimensional group of dif-
feomorphisms, G.

The diffeomorphism group is defined formally by

G ¼ f/ : X! Xj8W 2 G : W and W�1 differentiableg.
ð3Þ

An additional constraint is that elements of G must de-
pend smoothly on both arguments, x and t (Arnold,
1991). Locally, these transformations are affine. Now
denote diffeomorphic mappings / and W, such that /
(x, t) = /(t), W(y, s) = W(s), /(0) = x and W(0) = y with
s = 1�t. Group elements such as these are generated
by the o.d.e.,

d

dt
/ðtÞ ¼ vð/ðtÞÞ; ð4Þ

where / is in the Lagrangian frame and v is in the Eule-
rian frame. Here, the Eulerian velocity with which a par-
ticle leaves position y is given by v(/(t)). The velocity in
Lagrangian coordinates satisfies V(x, t) = v(y, t) (Mars-
den and Ratiu, 1999).

The v must satisfy continuity conditions in order to
guarantee the existence of these solutions. See, for exam-
ple, the development for image matching in (Dupuis
et al., 1998; Trouve, 1998) or that for fluid mechanics
in (Marsden and Ratiu, 1999). The v must be smooth
in the space of definition and the associated norm must
be bounded (Miller, 2004). Here, we will use the Sobolev
space V as in (Dupuis et al., 1998). A linear, differential
operator both defines the specific group of diffeomor-
phisms (along with boundary conditions) and insures
the smoothness required for integrability and to regular-
ize the solution (Tikhonov and Arsenin, 1977; Dupuis
et al., 1998; Marsden and Ratiu, 1999). A common lin-
ear operator for computational anatomy, used here, is
the modified Laplacian operator,

L ¼ lr2 þ kId; ð5Þ
where l and k are constants. Integrating the local norm
|Lv| over the domain X gives the functional norm iLvi =
iviL with i Æ i the usual L2 definition.

The final map, /(1), is found by integrating the veloc-
ities from time zero to time t = 1,

/ð1Þ ¼
Z t¼1

t¼0

v � /ðtÞdt. ð6Þ

The metric defined on G is given by the sum of
incremental functional norms in time, thus providing
the cost of registration, as well as a metric (Hirani
et al., 2001). The length of this diffeomorphic flow is
a direct analogy to curve length. The distance between
a pair of domains connected via a diffeomorphic flow
is a shortest path defined (Grenander and Miller,
1998; Hirani et al., 2001),

Dð/ð1ÞÞ ¼ inf
v

Z 1

0

kvð/ðtÞÞkdt. ð7Þ

Minor variations on this definition give the distance be-
tween diffeomorphisms (/(0) = g, /(1) = h with
g; h 2 G) or images (I � /�1(0) = I and I � /�1(1) = J).
This definition provides an appropriate notion of the
curved geometric distance between two instances of
anatomy.

2.3. Lagrangian push-forward algorithm

We now provide the details of our algorithm which
solves both landmark matching and image matching in
the Lagrangian domain with a time-optimal technique.
That is, the path of each material point (or labeled vox-
el) is tracked in time, as is the energy of the path.
Numerical techniques guarantee robust distance mea-
sures and consistent numerical stability. The method
uses the push-forward of image I but, at the same time,
provides the pull-back of image J to I through both /
and /�1. An overview is in Table 2.

2.3.1. Momentum and velocity

The velocity, in general, is found by computing the
momentum of the physical system and then finding the
Green�s kernel for L. The momentum requires comput-
ing the variation of the integral in problem (2). Our
method uses the push-forward of images and landmarks
to, effectively, set / to identity at each moment. We
state, without proof, that the momentum minimizing
(2) must satisfy at each time (a static view),

ðLvÞIJ ðyÞ ¼ jIðyÞ � JðyÞjrðIðyÞÞ; ð8Þ
for images warped by push-forward, I � /�1 � x = I � y,
and



Table 2
Overview of the Lagrangian push-forward algorithm

(1) Find the push-forward, I � /�1 to define the domain, y, on which v is defined. Use the push-forward method
(2) Compute v in Eulerian coordinates. Use the modified midpoint method. This step automatically adjusts the gradient estimate and step-size

such that dD
dt ¼ constant, that is, the increment in the distance does not change. This implies the energy of the velocity field is constant

in time
(3) Find V in Lagrangian coordinates, V = v � /, using (e.g. linear) interpolation
(4) Update / by V. Use the / update method in Eq. (11). Also update the geodesic distance by trapezoidal rule
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ðLvÞpqðp0Þ ¼
1

ri
ðq� p0Þ; ð9Þ

for the landmarks, where /�1(p) = p
0
. Both of these

equations assume the variation is taken at a static mo-
ment and that the image or landmark is pushed forward.
The momentum at each iteration is

vðyÞ ¼ w1ðyÞ
c1

KðLvIJ Þ þ
w2ðyÞ

c2

KðLvpqÞ; ð10Þ

where K is the Green�s kernel for L, the wi sum to one
and the ci scale the velocities to have the same L1 norm.
A pure landmark matching example is in Fig. 1. The
Jacobian term that comes from the change of coordi-
nates (Beg et al., 2005) is absorbed in the push-forward
of I. The equation (10) is the input to the estimate used
Fig. 1. Langrangian push-forward diffeomorphic landmark matching
is illustrated with an example in which one landmark is forced to pass
between two others. This type of transformation would typically
induce folding. The grid illustrates the smoothness of the
transformation.
in each step of the Modified Midpoint Method (MMM)
described in Table 3. Increasing the weighting on the
landmarks and allowing the registration to run for long
durations approximates exact matching to within sub-
pixel accuracy. An example of a landmarked and non-
landmarked image result is in Fig. 2. Combining both
landmark and intensity forces during the optimization
allows one to balance their relative influence on the solu-
tion. Both contribute to the velocity according to their
respective weights, which vary across the domain. Image
forces are used where landmark forces are absent, simi-
lar to the approach used for prior-based curve matching
in (Avants and Gee, 2003).
Table 3
Modified Midpoint Method for v (MMM)

(1) Set the initial estimate z0 = Id

(2) z1 = z0 + hv(t,y + z0)
(3) z2 = z0 + Hv(t + h,y + z1)
(4) Set the optimal estimate v* = 0.5(z2 + z1 + hv(t + H,y + z2))

Fig. 2. A two-dimensional, test example showing diffeomorphic
registration of human to chimp anatomy, with and without landmarks.
The anatomy must be landmarked to guarantee a successful result.
Linear landmark trajectories are overlaid on the upper left image.
Combining both landmark and intensity forces during the optimiza-
tion allows one to balance their relative influence on the solution.



Fig. 3. Langrangian push-forward diffeomorphic image matching is
illustrated here. For comparison, a method that uses addition, not
composition, is at top center. The topology is violated (at the arrow)
when one uses addition of the velocity fields, rather than composition.
This is a 2D experiment.
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2.3.2. Integrating /
The ordinary differential equation generating diffeo-

morphisms is solved in the Lagrangian frame of refer-
ence. The advantages and disadvantages of this
reference frame, as compared to the Eulerian frame,
are surveyed in (Donea et al., 2004). Our method is, in
fact, a combined approach, where Eulerian quantities
are computed in the Eulerian domain, but the total solu-
tion is stored and monitored in the Lagrangian domain.
The LPA algorithm for integrating the transformation /
is in Table 2.

Solving for / in the Lagrangian frame is attractive
because it allows larger time-steps than does the solution
in the Eulerian domain, such as (Christensen et al., 1997;
Grenander and Miller, 1998). The geodesic, /, and its
length is given by integrating the o.d.e. in step 4 of
Table 2. The Eulerian velocity estimate comes from
the second-order accurate modified midpoint method
(Press et al., 2002). The discretization in time is

d/ðx; tÞ
dt

¼ v � /ðx; tÞ;

/iþ1ðxÞ � /iðxÞ
Dt

� v � /tðxÞ;

/iþ1 ¼ /i þ Dtv � /tðxÞ;
/iþ1 ¼ ðIdþ DtvÞ � /i;

/iþ1ðxÞ ¼ xþ uðxÞ þ DtVðxÞ where VðxÞ ¼ v � /i.

ð11Þ

The material derivative, in Lagrangian calculations, is
just the time derivative (Donea et al., 2004). Thus, d//dt
is approximated with a simple finite difference. We also
adjust Dt such that the Courant–Friedrichs–Levy
(CFL) condition is met, that is, arc length of the geodesic
is small (spatially) and constant (or the momentum, if
Fig. 4. The use of computational grids for finding the velocity in the Lagrang
grids guarantees V(x, t) = v(y, t).
known, is conserved (Miller et al., 2003)). An example
of image matching with and without the diffeomorphic
constraint is in Fig. 3. The algorithm for estimating the
Lagrangian velocity is illustrated in Fig. 4.

2.3.3. Estimating v
The goal of this method is to find a numerically stable

v estimate and to allow one to guarantee that Eulerian
quantities are robustly computed and, if need be, con-
served. This is an improvement over the greedy method
used in (Christensen et al., 1997). The optimal velocity,
ian reference frame. Interpolating the velocity between the two regular
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v*, is found with the modified midpoint method as de-
scribed in (Press et al., 2002).

The estimates to the velocity at each iteration are
accumulated by MMM with temporal/spatial discretiza-
tion step h = H/2 and H equal to �h, where �h is the arc
length. Constant arc length integration of the velocity
norm gives an optimal in time two point trapezoidal
estimate to the geodesic distance of equation (7). Con-
stant spacing is required for the trapezoidal rule (Press
et al., 2002). The case for step-size h = H/n with n = 2
is described in Table 3.

MMM is second-order accurate and requires n + 1
evaluations of the v per iteration. Use of this method im-
proves the estimate of the geodesic distance, the momen-
tum and improves the convergence time over simpler
methods such as the trapezoidal rule or explicit Euler
integration. It is also more efficient than second-order
Runge–Kutta. We use MMM to average the velocity
over a small time increment but trapezoidal rule to inte-
grate the distances and the flow in time (Avants and
Gee, 2004b). A comparison of this method to Eulerian
(Christensen et al., 1996) image registration is shown
in Table 4. The LPF method shows similar time perfor-
mance with improved solution smoothness and distance
measurements, without the MMM method. The MMM
method is more costly in time performance but improves
the estimate to the geodesic distance. Comparison with
Christensen�s Eulerian method is in Table 4.
Table 4
Comparison of distances between human cortical images generated by a greed
the MMM and the Lagrangian algorithm with the MMM (MMM)

Case EUL Intensity Dist EUL D

1 1.65 2.39
2 1.64 2.56
3 1.73 2.61
4 1.63 2.52
5 1.67 2.52

MMM Intensity Dist MMM

1 1.65 1.85
2 1.63 1.73
3 1.73 2.15
4 1.62 1.82
5 1.65 1.86

LPF Intensity Dist LPF D

1 1.66 2.18
2 1.65 2.23
3 1.75 2.40
4 1.64 2.23
5 1.68 2.18

Distances given by MMM are shorter than both the LPF and EUL met
comparable in speed to the EUL algorithm. The EUL implementation is our
with the EUL execution time. The deformation column indicates the value of
method has the most deformation. This is attributed to the EUL method�s rela
integration. A set number of iterations and a constant time step of 0.2 pixel
2.3.4. Image push-forward

Pushing the coordinate map forward from the
Lagrangian domain allows us to compute the velocity
in the Eulerian frame. The warped domain, x! y, is
mapped to a new regular grid on which we compute v

and Lv as in Fig. 4. Warping the reference domain x
to the position y given by /�1(x) permits regularization
in the Eulerian domain but to continue to solve in the
Lagrangian domain via /. The push-forward constitutes
an inverse problem within the algorithm. It is found by
integrating the negative velocity fields in the Lagrangian
frame forward in time. The numerical integration of
d/�1/dt is similar to that described in Eq. (11) and is
shown in Table 5. This generates /�1 in the Eulerian
frame.

For generality, Table 5 illustrates the push-forward
method from an identity initialization. The algorithm�s
implementation, however, stores the last estimate to
/�1 which is used as the initialization each time the
method is called, therefore allowing it to converge
within a few (typically one) iterations. This algorithm
is effective within our registration method and as a gen-
eral procedure for the inversion of diffeomorphic maps.
The existence of a solution is guaranteed by the inte-
grability condition established for diffeomorphic image
registration (Dupuis et al., 1998), while uniqueness
comes from the uniqueness theorem of o.d.e.s (Arnold,
1991).
y Eulerian (EUL) algorithm, the Lagrangian (LPF) algorithm without

ist CPU time Deformation

1 0.40
1 0.40
1 0.42
1 0.39
1 0.42

Dist CPU time Deformation

1.41 0.38
1.54 0.38
1.60 0.43
1.63 0.38
1.63 0.42

ist CPU time Deformation

0.88 0.38
0.93 0.38
0.96 0.41
0.98 0.39
0.98 0.41

hod and the intensity differences are smaller. The LPF algorithm is
own, based on (Christensen et al., 1996). CPU time is given as a ratio
the map�s elastic deformation energy. It is significant that the Eulerian
tive lack of stability and its use of the material derivative in the velocity
s was used in this comparison.



Table 5
Push-Forward Method

(1) Output /�1(y) = x, given /(x) = y. Denote r as the image resolution
(2) Set /�1 = Id. Denote ~y as the current estimate to the Eulerian domain defined by /(x). At time zero, ~y ¼ x. At convergence, ~y ¼ y

(3) While ðkyð~yÞ � ~yk1 > 0.5rÞ
(4) Compute v�1ðxÞ ¼ /ðxÞ � ~yðxÞ
(5) Integrate /�1 such that /�1ð~y; t þ 1Þ ¼ /�1ð~y; tÞ þ cV�1ð~yÞ, where v�1(x) is warped to the Eulerian domain. The local scalar parameter, c,

sets the maximum L1 norm of v�1 to be half of the image discretization size, r

(6) end While
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3. Experimental design

The methods described above guarantee invertible
diffeomorphic transformations, the ability to compose
transformations and also robust distance estimates.
The diffeomorphisms may also be generated by both
landmark and image similarity. We will now use this
algorithm for morphometry of the chimpanzee and hu-
man cortex.

3.1. Inter-atlas comparison

An open question in computational anatomy is
how to connect disjoint anatomical templates, such
as the primate and Homo sapiens cortex. The shape
space for each species is generated from a different at-
las or reference, that is, one cannot generate a human
anatomical instance, JH, from a chimp anatomy, JC.
Selecting any single species atlas is bound to bias
the study and introduce error caused by varying tissue
characteristics, acquisition resolution as well as intrin-
sic difference in the anatomy. For example, gray mat-
ter and white matter intensities are (in MRI) less
distinct in the chimpanzee, as shown in the histograms
of Fig. 5.

Large deformation atlases may be used to compactly
represent a group and its shape and/or intensity varia-
tions. Large deformation atlas construction methodol-
ogy (Thompson et al., 1999; Avants and Gee, 2004b;
Joshi et al., 2004) combined with diffeomorphic inverse
consistent methods (Avants and Gee, 2004a) may aid
in constructing inter-species atlases, although significant
Fig. 5. The tissue histogram for the human (left) and the chimpanzee cortex
but are distinct in the human.
problems arise. No optimal inter-species atlas can be
constructed without positing a ‘‘missing link’’ anatomy.
These averaging models do not permit one to average
shape and intensity between two populations that do
not exist in the same shape space and that have close,
but different tissue characteristics. That is, only tissues
with similar intensity characteristics can be averaged
linearly and only shapes that come from the same ana-
tomical shape space may be averaged by our current
non-linear shape averaging models.

Therefore, we base our study on a connection be-
tween the anatomical shape spaces, through the most
representative atlases. We approximate transforma-
tions that bring the evolutionarily distinct atlases as
close as possible in a minimum-effort sense. A simple,
shape-only illustration is shown in Fig. 6. This ap-
proach gives a least action comparison between the
shape spaces with the constraint that the populations
connect only through least biased (having fewest indi-
vidual characteristics) mean representations. The
advantage, here, is that the intra-species shape vari-
ance is gained from comparison to the optimal sin-
gle-species atlas. The inter-species maps may be
gained from multiple putative models (as in Essen
(2004b)) or from expert landmarking.

Note an important property of this model. Assume
the correspondences are correct in the inter-species
map and, separately, in the intra-species maps. Compos-
ing these transformations will bring the full datasets into
anatomical–functional correspondence. This property
gives maximal benefit from minimal a priori knowledge
(expert intervention).
(right). The gray and white matter classes are mixed in the chimpanzee,



Fig. 6. This figure uses two simple shape spaces to illustrate the idea of mapping between atlas shapes. The only variable, here, is the shape and shape
transformations, not the intensity.
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This method for connecting anatomical templates,
gives the relationship of the human atlas group,
fIH � /�1

i g, to the group for the chimp atlas,
fIC � /�1

j g, through a single inter-species map, WHC,
and its effect on the first order statistical moment. The
resulting inter-species transformation moves between
representative anatomies (atlases), W 2 G : �IH ! �IC

.
Mapping an individual human to the chimpanzee
atlas is performed through composition, such that
Fig. 7. The connections between individuals and the atlases, through
composition. Connections in the directions opposite the arrows are
given by the inverse maps, /�1C, /�1H, W�1.

Fig. 8. Composition-based morphometry. Each circle contains a population
arrows emanating from each circle show the Jacobians generated from the
populations and implies a composition of transformations. The right hal
comparison including the T-field and the significant clusters. The data shown
interpretation of the references to colour in this figure legend, the reader is
ðJ H
i � /ið1ÞÞ �WHCð1Þ moves the human anatomy to

the chimp space. See Fig. 7. The distances in each shape
space are not changed by W or W�1 due to the right
invariance of the metric (Marsden and Ratiu, 1999) de-
fined on G.

An illustration of the full morphometry method is in
Fig. 8. The inter-species map connects the single-species
shape spaces through a functionally and anatomically
based geodesic path. That is, WHC finds the shortest path
connecting the means of the shape distributions, given
functional and anatomical constraints. Preferably, an in-
verse consistent large deformation method should be
used (Avants and Gee (2004a)). This allows one to rea-
lign the intra-species anatomy, via composition, in a sin-
gle species space in order to compare the volumetric
shape information (Ashburner et al., 1998; Ashburner
and Friston, 2000; González Ballester et al., 1999).

Our primary goal for this study is to quantify the
functional anatomic differences that exist between chimp
and human cortices. For this purpose, we map between
chimpanzee and H. sapiens cortex through 62 expert
with an anatomical shape space (a set of transformations). The red
shape spaces. Each black arrow indicates a connection between the

f of the figure shows example quantities derived from the Jacobian
in this image are example data, not the final result. See also Fig. 7. (For
referred to the web version of this article.)



Table 6
Inter-species right central sulcus functional landmarks (mm2)

Functional association Chimp landmark Human landmark

Pharynx 67 158 113 64 138 108
Tongue 69 158 124 63 142 117
Face 74 154 131 69 133 137
Thumbs 70 145 133 79 133 148
Hand 72 132 141 90 118 159
Arm 81 127 150 100 116 162
Trunk 95 128 158 104 115 166
Leg 106 121 165 114 113 167
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annotated landmarks. Some of the 62 points were cho-
sen strictly on the basis of anatomy, rather than func-
tion, because of the difficulty in identifying exactly
homologous behavioral functions in chimpanzees and
humans (e.g., only human cortices process language).
However, in three key areas homologous functional
information could be used to identify landmarks.

In particular, mapping of the motor cortex by electri-
cal stimulation has been performed on both chimpan-
zees (von Bonin and WS, 1950) and humans (Penfield
and Rasmussen, 1950), reflected in the landmarks de-
scribed in Table 6. The location of the planum tempo-
rale also appears to be functionally and anatomically
homologous (Gannon et al., 1998). In addition, it is
known that the primary visual cortex (Brodmann�s area
17) in chimpanzees extends quite a bit further anteriorly
than does the same area in humans (Brodmann, 1909).

In summary, the functional surface landmarks are
chosen to:

� functionally reparameterize the central sulcus,
� bring the primary visual cortex and olfactory sulcus

into alignment,
� and bring the planum temporale into approximate

alignment.

These landmarks are visualized in Fig. 9. After regis-
tration, all landmarks are brought into alignment to
within their associated variance.
Fig. 9. The surface (functional) landmarks are shown on the surface of the h
plenum temporale, central sulcus and on the boundaries of the visual cortex
3.2. Statistical morphometry

Voxel-based morphometry is often used to study shape
differences in populations via the methods of SPM (Good
et al., 2001; Ashburner et al., 1998). The basic unit of
measurement in this study is the Jacobian, which mea-
sures the local dilatation or contraction of the volume un-
der the action of the map. Jacobians are denoted fJH

i g
for human maps, fJC

j g for chimpanzee maps and
fJHC

i g for the inter-species Jacobians. They are derived
directly from the registration maps. We thus must first
find the within-species and then between-species maps.
3.2.1. Within-species variation
The chimps were initially aligned into the human

space by similarity transformation. The diffeomorphic
inter-species map thus recovers only non-rigid deforma-
tion. We computed the maps, f/C

j g and f/H
i g, using the

large deformation setting described in Eq. (2) without
landmarks. The reference image for each species is the
anatomy that locally minimizes the group-wise large
deformation distance summed over the whole dataset
(7). The shape averaging method described in (Avants
and Gee, 2004b) was used to generate the shape atlases
and was followed by intensity averaging. The major in-
ter-species features (ventricles, central sulcus, visual
cortex, frontal lobes) are well-aligned for each within-
species dataset without the need for landmarking. These
same features do require landmarking for the inter-
species mapping to be correct. The topology preserving
nature of the deformation may be seen in Fig. 10. The
map between the two most representative (average
shape and average intensity) anatomies is in Fig. 11.
3.2.2. Between-species variation

The inter-species log-Jacobians are given by the sum
of the /H

i log-Jacobian with the WHC log-Jacobian,

logJHC
i ¼ ðlogJH

i Þ �WHCð1Þ þ logJHC.
uman and chimpanzee shape atlases. The major landmarks are on the
.



Fig. 10. The grid of the landmark induced deformation from chimp to human. Note that the frontal lobe shrinks and the visual regions enlarge and
curve laterally.
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Note that, after composition with WHC, the chimp
and human to chimp Jacobians, JHC

i , are in the same
space. We then statistically compare the datasets
flogJC

j g and flogJHC
i g, where each Jacobian is

smoothed by a Gaussian filter with unit variance.

3.2.3. Confidence testing

Permutation testing should be used to gain statistics
from composition-based morphometry, as it is a non-
parametric model. However, this is a time consuming
and expensive route. We will use the standard Student�s
t-statistic giving the probability that two sample popula-
tions X and Y have significantly different means. Stu-
dent�s t-statistic assumes that data are drawn from
populations with the same true variance. This is likely
not the case for the chimpanzee and human population.
Thus, the t-statistic remains a useful qualitative way to
view the data that will reveal if the effect of the map
WHC on the means is within the variance of each popu-
lations� statistics. Results of permutation testing (an
empirical technique) with 1000 permutations show sim-
ilar results, for large structures such as the pre-frontal
lobe, to those given by thresholding the uncorrected
t-statistic at p-value 0.001.

3.3. Materials

3.3.1. Image acquisition

The structural data were obtained from two differ-
ent MRI acquisition sequences. The primate brain
scans were obtained from Yerkes Regional Primate
Research Center. The scans were T1 weighted, TR =
19.0 ms, TE = 8.5 ms, across subject the slice thickness
varied from 1.4 to 2 mm, and in-plane spatial resolu-
tion varied from 0.78 to 0.70 mm2. H. sapiens brain
scans were obtained from healthy volunteers (approval
was obtained from the U.C. San Francisco and Uni-
versity of Pennsylvania IRBs). These scans were T1-
weighted, with TR = 32 ms, TE 8 ms, with in-plane
resolution of 0.94 mm2. Female scans had slice thick-
ness of 1.5 mm; male scans had slice thickness of
0.99 mm.
3.3.2. Computers and software

The computations were performed on a PowerMac
G5 with 4.5 GB of memory. Preprocessing steps in-
cluded inhomogeneity correction, extraction of the brain
from the head and then semi-automated segmentation
of the cerebral cortex using Analyze software. This gave
us the required structural data for analysis. The data
were all initially aligned to a common image space, de-
fined by arbitrarily selecting one of the human brains.
The novel numerical methods were implemented within
the Insight Tool Kit (ITK) (Yoo, 2003).
3.4. Interpretation of morphometric study

These experiments do not claim to be a perfect rep-
resentation of the actual inter-species map. The extent



Fig. 11. The mean shape and intensity human (top) is mapped such
that it takes on the appearance of the mean shape and intensity chimp
cortex (bottom). We note that this last image is in fact the repositioned
human anatomy but that it looks nearly identical to the chimp
anatomy (at least from the surface view). The functionally based
reparameterization of the central sulcus may be seen in the lateral view.

Fig. 12. Semi-automated segmentations mapped between chimp and
human. The structures are arbitrarily color-coded such that all
connected pixels have the same appearance. These segmentation blobs
were placed approximately in the prefrontal region and near the visual
cortex in the chimpanzee. The action of the map on the blobs confirms
that the chimpanzee tends to have relatively larger visual cortex and
smaller prefrontal regions. Because these manual segmentations are
defined on the chimp, they had to be pushed forward to the human but
are still overlaid on the chimp.
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to which they result in a valid representation of the
size and location of the differences depends on the ex-
tent to which: (1) the landmarks were correctly cho-
sen; (2) the mapping in non-landmarked areas is
approximated by the diffeomorphic flow methods used
here; (3) the specimens used are representative of their
respective species. An additional interesting question is
whether a diffeomorphism is a viable model of the in-
ter-species map. Assessing this question is one goal of
this study. In fact, we have found that for the chim-
panzee and human cortex, the diffeomorphic model
appears to be reliable, at least from a structural stand-
point. This is supported by the topologically similar
functional positions found along the central sulcus,
as described in Section 3.1, as well as Van Essen�s
studies based on surface diffeomorphisms (Essen,
2004a).

The methods aim to produce the least biased geodesic
map with the information at hand. Even given the limi-
tations, they provide quite a bit more resolution of the
differences between chimp and human than has been as-
sessed using more traditional methods of image analysis,
which typically involve hand-delineating (with conse-
quent likely error) specific regions of interest. This meth-
od enables a global assessment of differences and allows
us to visualize areas of likely evolutionary change with-
out specific a priori focus on regions. This method also
summarizes inter-population information in a single
time-series of images, as in Fig. 11. An important exten-
sion will be to make this inter-population map
probabilistic.

One area of particular interest in primate compari-
sons is the prefrontal lobe, which some studies have
suggested is relatively (and absolutely) substantially
larger in humans (Blinkov and Glezer, 1968; Brod-
mann, 1912; Bush and Allman, 2004; Holloway,
1968, 2002), but others conclude that it is as large or
only slightly larger relative to brain size as is typically
found in primates (Holloway, 1992, 1999). Several
studies have concluded that the entire frontal lobe (of
which the prefrontal is only a portion) is no larger in
humans than one would predict (Rilling and Insel,
1999; Schoenemann and Glotzer, 2003; Semendeferi
et al., 1998). The methods used here avoid the need
for detailed prior manual delimitation, and allow for
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a simultaneous assessment of the relative size of areas
across the entire cortex. The average human and aver-
age chimp, in our datasets, show a doubling in relative
prefrontal size. This is in support of the generally ac-
cepted value.

We visualize these regional results by showing the
action of /�1 on manually segmented structures in
Fig. 12 and structures segmented from the Jacobian be-
tween average chimp and human in Fig. 13. Statisti-
cally segmented structures are rendered in Fig. 14.
The structures where the human is relatively larger have
p-value <0.001 and t-test greater than zero. The struc-
tures where the chimp is relatively larger have p-value
<0.001 and t-test less than zero. We analyze, in partic-
ular, the size of the automatically segmented prefrontal
structure, in Fig. 15 and the Jacobian-derived structure
in Fig. 13. Both segmentations of this structure show
that it is 2.03 times larger, in relative terms, in the hu-
man. Our experiments therefore confirm the generally
accepted relative size difference of the pre-frontal lobe
in a small set of chimpanzee and human cortices. Fur-
Fig. 13. Semi-automated segmentations of the approximate prefrontal
region (top two rows, 2.03 times relatively larger in the human). Dark
regions indicate the H. sapiens structure is relatively larger, while
bright regions indicate the chimp structure is relatively larger. The
structure was segmented by placing a level set seed in the general area
of the prefrontal region in the Jacobian image and allowing the seed to
expand, for fixed time, into the areas of increased relative human size.
The average human to chimp log-Jacobian image is in the third row
from top. The variance of the human to chimp log-Jacobian image is in
the bottom row.

Fig. 14. Structures that appear relatively larger in the chimp (top)
pushed forward to the human size (top middle) and human (bottom
middle) pushed forward to the human size (bottom). The structures are
arbitrarily color-coded such that all connected pixels have the same
appearance. Because these statistical segmentations are defined on the
chimp, they had to be pushed forward to the human. Of particular
interest is the asymmetry of the structures that are relatively
significantly larger in the chimp. This is caused by the asymmetry in
functional reparameterization of the primary motor cortex, indicating
that the left side of the human cortex has undergone greater
morphological change than the right. This is consistent with the fact
that some key aspects of language processing are lateralized to the left
hemisphere in most humans. The regions where human is relatively
larger are the prefrontal (as expected) and a few lateral structures that
may be associated with language development. We intend to do a more
detailed analysis in a separate text. Note that some smaller structures
are visible in one view and not the other because of different surface
depths.
thermore, the statistical segmentation suggests bound-
aries of the likely areas of increased size, as in Figs. 14
and 15. These studies will ultimately help map the evo-
lution of brains across primates and even mammals.
The functional implications of these differences also elu-
cidate the evolution of brain and behavior in our own
lineage.



Fig. 15. Prefrontal results. The statistically segmented prefrontal
region is in both the chimp (top) and human (bottom). The color
indicates the local chimp to human Jacobian value (red lower, yellow
higher). The prefrontal region is shown to be statistically relatively
larger in humans by the analysis of the map�s action on the local
volume of structures. The prefrontal volume as defined in the chimp
image has a total size increase of 2.03 when it is moved to the human
domain. This is almost identical to the prefrontal size difference
between chimp and human as computed by other researchers using
other methods (Deacon, 1997). Because the statistics are defined on the
chimp, the prefrontal segmentation had to be pushed forward to the
human. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

410 B.B. Avants et al. / Medical Image Analysis 10 (2006) 397–412
4. Conclusion

We presented the LPA algorithm for minimizing
Eq. (2) that incorporates an inverse transformation, in-
time optimization and a robust velocity estimate. This
leads to improved estimates of geodesic distances over
greedy, Eulerian gradient descent techniques. The algo-
rithm solves the diffeomorphism o.d.e. in the Lagrangian
reference frame, but integrates the inverse transforma-
tion as well. This sub-algorithm is efficient as shown
by comparison to Eulerian methods. Furthermore, long-
er time steps may be used with Lagrangian techniques.
Future work on this algorithm may consist of adding
post-processing of the geodesic path (Beg et al., 2005).
We also intend to investigate the Euler–Lagrange equa-
tions derived by Miller et al. (2002) and deeper connec-
tions to work in fluid mechanics (Holm et al., 2004).

The LPA algorithm was used in concert with atlas-
building methods to develop a variational motivation
for connecting between anatomical templates. These
principles lead naturally to composition-based mor-
phometry. The motivation for these techniques was gi-
ven by the lack of justification for using a single
species atlas for an inter-species study. Furthermore, it
is untenable to build an inter-species optimal atlas with
current techniques in imaging and atlas construction.
For these reasons, our inter-species maps were based
on detailed landmarking of functional–anatomical
homologues found on the most representative, average
atlas images. Future work will further develop theory
for connecting anatomical shape spaces and for compo-
sition-based morphometry.

Our population-based quantitative methods pro-
duced values for the estimated size difference between
human and chimp prefrontal regions that support com-
mon estimates in the literature. We computed the differ-
ence in prefrontal size between our average chimp and
average human as 2.03. Many other interesting struc-
tures of difference between chimp and human were
found, but have yet to be analyzed in detail. We are cur-
rently investing in a more detailed analysis of regions of
difference, especially along the central sulcus, in the vi-
sual cortex and in areas of the brain associated with lan-
guage development. Asymmetry analysis is also
fundamental for understanding the difference in the evo-
lution of the chimpanzee and human cortex. We also in-
tend to investigate the effect of different homologue
choices on the inter-species map. Finally, we hope to
collect more data to aid in expanding the relevance of
a full non-parametric statistical study using these
methods.
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